One-pot synthesis of uniform TiO₂ nanorods and monodisperse TiO₂ microspheres and their light scattering properties

HEQUAN WANG^{a*}, YONGCAI WANG^{a,c}, WENXIA ZHAO^b, CHAOLUN LIANG^b, YONG. LIU^c, HAI WANG^c HAIBO LI^a

^aInstitute of Mechanical and Electrical Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110136, China

^bInstrumental Analysis and Research center, Sun Yat-sen University, Guangzhou 510275, China ^cSchool of Physics and Engineering, Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China

The large-scale highly ordered TiO₂ nanorods and monodisperse TiO₂ microspheres were synthesized via a facile hydrothermal route. Under the same conditions, the TiO₂ nanorod arrays were directly obtained on the fluorine-doped tin oxide (FTO) substrate, while the monodisperse TiO₂ microspheres were obtained at the bottom of Teflon-lined autoclave without the FTO substrate. The as-prepared TiO₂ microspheres are found to be composed of radial single-crystal rutile TiO₂ nanorods. The FTO substrate plays a crucial role in the oriented growth of nanorod arrays. Accordingly, a possible mechanism for the formation of TiO₂ nanorod arrays and TiO₂ microspheres was proposed. The light scattering properties of TiO₂ microspheres were characterized by the UV-Vis spectrometry. The superior light scattering properties of TiO₂ microspheres makes them promising materials for applications in the solar cells.

(Received April 09, 2010; accepted June 16, 2010)

Keywords: Titanium oxide, Nanorods, Microsphere, Scattering properties

1. Introduction

As an important p-type versatile oxide semiconductor, titania has been widely utilized in photonic crystals [1, 2], photovoltaic cells [3, 4], photocatalysis [2, 5, 6], energy conversion and storage [7], and electrochemical sensing [8-11]. These practical applications of titania often varied considerably with its morphology and texture, tunable size, phase, as well as crystallographic orientation bearing specific functional characteristics. Recently, one-dimensional titania-based nanomaterials including nanowires [12-14] or nanorods [15], nanotubes [16-19], nanoflowers [20] and other hierarchical structures [21, 22], have gained considerable attention due to their promising applications in photovoltaic cells, such as dye-sensitized solar cells (DSSCs) [23-25], a promising alternative to silicon solar cells in the future. Among these one-dimensional TiO₂ nanomaterials, such as nanotubes and nanowires or nanorods have potential to increase the photovoltaic performance of DSSCs owing to their surface area for dye loading and reduced grain boundaries where charge recombination occurs [26].

To date, some light-scattering TiO₂ nanostructures

have been reported in order to further improve the energy conversion efficiency of DSSCs [27]. These morphologies of TiO₂ nanostructures are often microspheres composed of many nanoparticles. Thus, these light scattering TiO2 nanostructures not only have practical light scattering ability, but also have large surface area for dye adsorption. Compared with the nanoparticles, nanorods show superior electron transfer ability. Similar to composite TiO2 microspheres made of nanoparticles, the synthesis of TiO2 microspheres composed of nanorods were also been successfully prepared via a simple hydrothermal method [28, 29]. However, relatively few studies reported the synthesis and light scattering properties of TiO₂ microspheres by a nonpolar solvent/hydrophilic solid substrate interfacial reaction under hydrothermal conditions.

In this work, we report the synthesis of monodisperse TiO_2 microspheres via a nonpolar solvent/hydrophilic solid substrate interfacial reaction under mild hydrothermal conditions and investigate their light scattering properties. Additionally, the proposed method can also selectively prepare highly ordered rutile TiO_2 single-crystal nanorod arrays on fluorine-doped tin oxide (FTO) glass substrate.

2. Experimental section

2.1 Chemicals

Titanium Tetrabutoxide, HCl (wt37%) and Toluene were purchased from Guangzhou reagent Co., Ltd, China. Toluene was used as the nonpolar solvent (Shang Hai ShenXiang chemical Reagent CO . Ltd). FTO glass was purchased from Nippon Sheet Glass Co., Ltd.

2.2 Synthesis of TiO₂ microspheres and TiO₂ nanorod arrays

The monodisperse TiO_2 microspheres were synthesized by the modified method for TiO_2 nanorods described in the literature [30]. In a typical synthesis, 2 mL of titanium tetrabutoxide, 0.5 mL of titanium tetrachloride, and 1 mL HCl (37wt%) were mixed with 10 mL of toluene. Then the resulting mixtures were sealed within a Teflon-lined stainless steel autoclave (50 mL) and heated at 150 for 20 h. After the reaction, the TiO₂ microspheres samples were obtained after centrifugation, washing with ethanol, and finally drying in air for further characterization. For the formation of TiO₂ nanorod arrays, a FTO substrate was placed against the wall of the autoclave with the conducting side facing down. Other synthesis conditions are the same as in the above described hydrothermal process.

2.3 Characterization

Powder X-ray diffraction (XRD; SHIMADZU XRD-6000) was used to determine the crystalline phase of TiO₂ microspheres and nanorods. The morphologies and dimensions of the as-synthesized TiO₂ microspheres and nanorods were observed by field-emission scanning electron microscopy (FESEM, LEO 1550 VP) equipped with EDS. TEM images and selected area electron diffraction (SAED) patterns of the resulting TiO₂ microspheres were obtained on a JEM-100 CX transmission electron microscope operating at 200 KV. To investigate the geometry influence on solar light scattering, diffuse reflection was measured in the 400-800 nm wavelength range on Model U-4100 spectrophotometer (HITACHI) with integrating sphere as accessory.

3. Results and discussion

3.1 Formation of TiO₂ nanorod arrays

Fig. 1 shows the typical SEM images of TiO_2 nanorod arrays on the FTO substrate. Fig. 1a and b are top-view images of TiO_2 nanorod arrays at low and high magnification, respectively. It can be seen that the TiO_2 nanorod arrays are highly uniform and densely packed with flat tetragonal crystallographic planes. Fig. 1c is a cross-sectional view of TiO_2 nanorod arrays.

Fig. 1. FESEM images of TiO₂ nanorod arrays on FTO coated glass at 150 $\,^{\circ}$ C for 20h. (a) top-view images at low magnification; (b) top-view images at high magnification; (c) cross-sectional FESEM image of the TiO₂ nanorods, mechanically peeled off the FTO coated glass.

The diameter of the TiO₂ nanorods is ca. 20-30 nm and the thickness of TiO₂ film composed of nanorods is ca. 8 μ m. The XRD pattern of the obtained nanorods is shown in Fig. 2. The XRD pattern shows that the TiO₂ nanorod deposited on FTO substrate has tetragonal rutile structure (JCPDS No.65-0191).

Compared to the powder diffraction pattern, the (002) diffraction is was significantly enhanced, showing that the TiO_2 nanorod arrays are well crystallized and grow perpendicularly to the FTO substrate.

Fig. 2. XRD pattern of TiO_2 nanorod arrays coated on FTO glass.

3.2 Formation of TiO₂ microspheres

It is remarkable that large-scale uniform TiO_2 microspheres composed of many radial TiO_2 nanorods can be readily obtained at the bottom of the Teflon-lined autoclave without FTO substrate, as shown in Fig. 3.

Fig. 3. FESEM images of TiO₂ microspheres composed of nanorods 150 $\,^{\circ}C$ for 20 h. (a) top-view images at low magnification; (b) and (c) top-view images at high magnification.

The corresponding XRD pattern points out that the TiO_2 microspheres has rutile structure (Fig. 4).

Fig. 4. The corresponding XRD pattern of TiO₂ microspheres without FTO substrate.

3.3 Possible mechanism for the formation of highly ordered TiO₂ nanorods and TiO₂ microspheres

On the basis of the above research results, we proposed a possible growth mechanism of TiO₂ nanorods with FTO substrate and TiO2 microspheres without FTO substrate, as schematically shown in Fig. 5. In the presence of FTO substrate, at the beginning, Ti4+ precursors can hydrolyze with water at the interface of water/FTO substrate, resulting in the formation of a nucleus. With the Ti⁴⁺ precursor continuous hydrolysis, the nuclei finally grew into TiO_2 nanorod arrays on the FTO substrate. Here, it is important to mention that HCl in the solution has played a crucial role throughout the synthesis process. Firstly, the low pH value of the reaction solution delays the hydrolysis of Ti⁴⁺ precursor with water. Secondly, a Cl⁻ ion can selectively adsorb on different crystal planes, ensuring anisotropic growth in the [001] direction [31]. Compared to the FTO substrate, the interface of water/FTO substrate between the nuclei and substrate can not be formed without the FTO substrate. Therefore, the nuclei were randomly formed at the bottom of the Teflon-lined autoclave. With the continuous reaction, the nuclei grow into TiO2 nanorods and finally formed TiO₂ microspheres.

Fig. 5. Schematic illustration of the formation of highly ordered TiO_2 nanorod arrays on the FTO substrate and uniform TiO_2 microspheres.

3.4 Light scattering properties of TiO₂ nanorods and TiO₂ microspheres

To explore the potential application of TiO_2 nanomaterials, the light scattering properties of TiO_2 nanorods and microspheres were measured. Fig. 6 shows the UV-vis reflectance spectra of highly ordered TiO_2 nanorods and monodisperse TiO_2 microspheres. The reflectance of monodisperse TiO_2 microspheres is 39% in the wavelength range 400-800 nm, which is almost up to two times higher than that (22.0%) of highly ordered TiO_2 nanorods, indicating that the monodisperse TiO_2 microsphere have a higher light scattering properties than the highly ordered TiO_2 nanorods. The superior light scattering properties of monodisperse TiO_2 microspheres is expected to be applied dye-sensitized solar cells.

Fig. 6. The UV-Vis reflectance spectra of highly ordered TiO₂ nanorods and monodisperse TiO₂ microspheres.

4. Conclusions

In conclusion, a facile hydrothermal method was selectively developed to prepare TiO₂ microspheres without FTO substrates and highly ordered single-crystal rutile TiO₂ nanorods on FTO substrates. The diameters of the TiO₂ microspheres were around 6 μ m, and the TiO₂ microspheres are built from small single-crystal nanorods with diameters of 20-30 nm. The FTO substrate is believed to play a crucial role in the synthesis of uniform TiO₂ microspheres. The small lattice mismatch between the TiO₂ nanorods and FTO substrate drives the nucleation and growth of the TiO2 nanorods. More importantly, the experiments have demonstrated a strong improvement of light scattering by the TiO₂ microspheres thin films, providing promising applications as light-scattering layers in different types of nanostructured solar cells including organic, hybrid and dye-sensitized solar cells.

Acknowledgements

The authors greatly acknowledge the support of the Natural Science Foundation Project of Liaoning Province (Grant No. 20072013) for this research.

References

- Y. Z. Zheng, X. Tao, L. X. Wang, H. Xu, Q. Hou, W. L. Zhou, J. F. Chen, Chem Mater. 22, 928(2010).
- [2] G. Subramania, Y. J. Lee, A. J. Fischer, D. D. Koleske, Adv Mater. 22, 487 (2010).
- [3] Y. T. Lin, T. W. Zeng, W. Z. Lai, C. W. Chen, Y. Y. Lin, Y. S. Chang, W. F. Su, nanotechnology 17, 5781 (2006).

- [4] A. Kukrek, D. Wang, Y. Hou, R. Zong, R. Thummel, Inorg Chem. 45, 10131 (2006).
- [5] F. Di. Fonzo, C. S.Casari, V. Russo, A. L. Bassi, C. E. Bottani, Nanotechnology 20, 1 (2009).
- [6] T. Ochiai, K. Nakata, T. Murakami, A. Fujishima, Y. Y. Yao, D. A.Tryk, Y. Kubota, Water Res. 44, 904 (2010).
- [7] M. T. Brumbach, T. M. Alam, P. G., Kotula, B. B. McKenzie, B. C. Bunker, ACS Appl. Mater Interfaces 2,778.
- [8] I. Hanzu, T. Djenizian , P. Knauth , J Phys Chem C113, 20568 (2009).
- [9] J. Y. Park, A. M.Azad, S. J. Song, E. D. Wachsman, J. Am. Ceram. Soc. 93, 742 (2010).
- [10] E. Topoglidis, C. J. Campbell, A. E. G. Cass, J. R. Durrant, Langmuir **17**,7899 (2001).
- [11] H. P. Wu, T. L.Cheng, W. L.Tseng, Langmuir 23, 7880 (2007).
- [12] D. L. Morgan, H. W. Liu, R. L. Frost E. R. Waclawik, J. Phys. Chem. C114, 101 (2010).
- [13] N. Fu, Y. Q.Wu, Z. L. Jin , G. X. Lu, Langmuir 26, 447 (2010).
- [14] H. M. Zhang, P. R. Liu, H. J. Wang, H. Yu, S. Q. Zhang, H. Y. Zhu, H. J. Zhao, Langmuir 26, 1574 (2010).
- [15] T. A. Kandiel, R.Dillert, A. Feldhoff, D. W. Bahnemann, J. Phys. Chem. C114, 4909 (2010).
- [16] Y. Liu, H. Wang, M. Li, R. J. Hong, Q. H. Ye, J. M. Zheng, H. Shen, Appl. Phys. Lett, Article 95, 3 (2009).
- [17] L. X. Yang, S. L. Luo, R. H. Liu, Q. Y. Cai, Y. Xiao, S. H. Liu, F. Su, L. F. Wen, J. Phys. Chem. C114, 4783 (2010).

- [18] X. J. Feng, T. J. La Tempa, J. I. Basham, G. K. Mor, O. K.Varghese, C. A. Grimes, Nano Lett. **10**, 948 (2010).
- [19] Z. Y. Liu, M. Misra, Nanotechnology 21, 2010.
- [20] J. M. Wu, B. Qi, J. Phys. Chem. C111, 666 (2007).
- [21] S. H. Zhou, Z. Ma, G. A. Baker, A. J. Rondinone, Q. Zhu, H. M. Luo, Z. L. Wu, S. Dai, Langmuir 25, 7229 (2009).
- [22] R. Ostermann, D. Li, Y. D.Yin, J. T. McCann, Y. N. Xia, Nano Lett. 6, 1297(2006).
- [23] C. Y. Lee, J. T. Hupp, Langmuir **26**, 3760 (2010).
- [24] P. Wang, S. M. Zakeeruddin, J. E. Moser, T. Sekiguchi, M. Gratzel, Nat. Mater. 2, 402 (2003).
- [25] M. K. Wang, S. J. Moon, M. F. Xu, K. Chittibabu, P. Wang, N. L. Cevey-Ha, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel, Small 6, 319 (2010).
- [26] M. Y. Song , Y. R. Ahn, S. M. Jo, D. Y. Kim, J. P. Ahn, Applied Physics Letters 87, 113113 (2005).
- [27] Hyung-Jun Koo, Yong Joo Kim, Yoon Hee Lee, Wan In Lee, Kyungkon KimNam-Gyu Park, Adv. Mater, 20, 195 (2008).
- [28] J. Q. Luo, L. Gao, Journal of Alloys and Compounds 487, 763 (2009).
- [29] Y. B. Zhang, X. J. Feng, L. Jiang, Sci China Ser B-Chem. 50, 175 (2007).
- [30] X. J. Feng , K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa , C. A. Grimes, Nano Lett. 8, 3781 (2008).
- [31] M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, F. M. Wang , J. Am. Chem. Soc 126, 14943 (2004).

*Corresponding author: neuwhq@163.com